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Abstract. A new algorithm, featuring overlapping domain
decompositions, for the parallel construction of Delaunay
and Voronoi tessellations is developed. Overlapping allows
for the seamless stitching of the partial pieces of the global
Delaunay tessellations constructed by individual processors.
The algorithm is then modified, by the addition of stereo-
graphic projections, to handle the parallel construction of
spherical Delaunay and Voronoi tessellations. The algo-
rithms are then embedded into algorithms for the paral-
lel construction of planar and spherical centroidal Voronoi
tessellations that require multiple constructions of Delau-
nay tessellations. This combination of overlapping domain
decompositions with stereographic projections provides a
unique algorithm for the construction of spherical meshes
that can be used in climate simulations. Computational tests
are used to demonstrate the efficiency and scalability of the
algorithms for spherical Delaunay and centroidal Voronoi
tessellations. Compared to serial versions of the algorithm
and to STRIPACK-based approaches, the new parallel algo-
rithm results in speedups for the construction of spherical
centroidal Voronoi tessellations and spherical Delaunay tri-
angulations.

1 Introduction

Voronoi diagrams and their dual Delaunay tessellations have
become, in many settings, natural choices for spatial grid-
ing due to their ability to handle arbitrary boundaries and
refinement well. Such grids are used in a wide range of ap-
plications and can, in principle, be created for almost any
geometry in two and higher dimensions. The recent trend
towards the exascale in most aspects of high-performance

computing further demands fast algorithms for the genera-
tion of high-resolution spatial meshes that are also of high
quality, e.g. featuring variable resolution with smooth tran-
sition regions; otherwise, the meshing part can dominate the
rest of the discretization and solution processes. However,
creating such meshes can be time consuming, especially for
high-quality, high-resolution meshing. Attempts to speed up
the generation of Delaunay tessellations via parallel divide-
and-conquer algorithms were made in, e.g.Cignoni et al.
(1998); Chernikov and Chrisochoides(2008), however these
approaches are restricted to two-dimensional planar surfaces.
With the current need for high, variable-resolution grid gen-
erators in mind, we first develop a new algorithm that makes
use of a novel approach to domain decomposition for the
fast, parallel generation of Delaunay and Voronoi grids in
Euclidean domains.

Centroidal Voronoi tessellations provide one approach
for high-quality Delaunay and Voronoi grid generation (Du
et al., 1999, 2003b, 2006b; Du and Gunzburger, 2002;
Nguyen et al., 2008). The efficient construction of such grids
involves an iterative process (Du et al., 1999) that calls for the
determination of multiple Delaunay tessellations; we show
how our new parallel Delaunay algorithm is especially use-
ful in this context.

Climate modelling is a specific field which has recently
begun adopting Voronoi tessellations as well as triangular
meshes for the spatial discretization of partial differential
equations (Pain et al., 2005; Weller et al., 2009; Ju et al.,
2008, 2011; Ringler et al., 2011). As this is a special in-
terest of ours, we also develop a new parallel algorithm for
the generation of Voronoi and Delaunay tessellations for the
entire sphere or some subregion of interest. The algorithm
uses stereographic projections, similar toLambrechts et al.
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(2008), to transform these tasks into planar Delaunay con-
structions for which we apply the new parallel algorithm
we have developed for that purpose. Spherical centroidal
Voronoi tessellation (SCVT) based grids are especially de-
sirable in climate modelling because they not only provide
for precise grid refinement, but also feature smooth transi-
tion regions (Ringler et al., 2011, 2013). We show how such
grids can be generated using the new parallel algorithm for
spherical Delaunay tessellations.

The paper is organized in the following fashion. In
Sect.2.1, we present our new parallel algorithm for the con-
struction of such tessellations. In Sect.2.2, we provide a brief
discussion of centroidal Voronoi tessellations (CVTs) fol-
lowed by showing how the new parallel Delaunay tessella-
tion algorithm can be incorporated into an efficient method
for the construction of CVTs. In Sect.3.1, we provide a short
review of stereographic projections followed, in Sect.3.2,
by a presentation of the new parallel algorithm for the con-
struction of spherical Delaunay and Voronoi tessellations. In
Sect.3.3, we consider the parallel construction of spherical
CVTs. In Sect.4, the results of numerical experiments and
demonstrations of the new algorithms are given; for the sake
of brevity, we only consider the algorithms for grid genera-
tion on the sphere. Finally, in Sect.5, concluding remarks are
provided.

2 Parallel Delaunay and Voronoi tessellation
construction in Rk

In this section, we present a new method for the construction
of Delaunay and Voronoi tessellations. The algorithms are
first presented inR2 and later extended toR3.

2.1 Parallel algorithm for Delaunay tessellation
construction

The construction of planar Delaunay triangulations in paral-
lel has been of interest for several years; see, e.g.Amato and
Preparata(1993); Cignoni et al.(1998); Zhou et al.(2001);
Batista et al.(2010). Typically, such algorithms divide the
point set up into several smaller subsets, each of which can
then be triangulated independently from the others. The re-
sulting triangulations need to be stitched together to form
a global triangulation. This stitching, or merge step, is typi-
cally computed serially because one may need to modify sig-
nificant portions of the individual triangulations. The merge
step is the main difference between the different parallel al-
gorithms. Here, we provide a new alternative merge step that,
because no modifications of the individual triangulations are
needed, can be performed in parallel.

We are given a set of pointsP = {xj }
n
j=1 in a given

domain � ⊂ Rk. We begin by covering� by a setS =

{Sk(ck, rk)}
N
k=1 of N overlapping spheresSk, each of which is

defined by a centre pointck and radiusrk. For each sphereSk,

a connectivity or neighbour list is defined which consists of
the indices of all the spheresSi ∈ S, i 6= k, that overlap with
Sk. From the given point setP , we then createN smaller
point setsPk, k = 1, . . . ,N , each of which consists of the
points inP which are in the sphereSk. Due to the overlap
of the spheresSk, a point inP may belong to multiple points
setsPk. This defines what we are referring to as our sorting
method. The presented sort method is the simplest to under-
stand, but provides issues with load balancing on variable
resolution meshes. For that reason, we use an alternate sort
method in practice which is described Sect.2.1.1.

The next step is to construct theN Delaunay tessellations
Tk, k = 1, . . . ,N , of theN point setsPk, k = 1, . . . ,N . For
this purpose, one can use any Delaunay tessellation method
at one’s disposal; for example, in the plane, one can use the
Delaunay triangulator that is part of the Triangle software of
Shewchuk(1996). A note should be made, that these triangu-
lation software packages only aid in the computation of the
triangulation. For example, they can not be used to determine
which points should be triangulated. These Delaunay tessel-
lations, of course, can be constructed completely in parallel
after assigning one point setPk to each ofN processors.

At this point, we are almost but not quite ready to merge
theN local Delaunay tessellations into a single global one.
Before doing so, we deal with the fact that although, by con-
struction, the tessellationTk of the point setPk is a Delaunay
tessellation ofPk, there are very likely to be simplices in the
tessellationTk that may not be globally Delaunay, i.e. that
may not be Delaunay with respect to points inP that are
not in Pk. This follows because the points in anyTk are un-
aware of the triangles and points outside ofSk so that there
may be points inP that are not inPk that lie within the cir-
cumsphere of a simplex inTk. In fact, only simplices whose
circumspheres are completely contained inside of the ballSk

are guaranteed to be globally Delaunay; those points satisfy
the criteria

||ck − ĉi || + r̂i < rk, (1)

wherêci and̂ri are the centre and radius of the circumsphere
of thei-th triangle in the local Delaunay tessellationTk.

So, at this point, for eachk = 1, . . . ,N , we construct the
triangulationT̂k by discarding all simplices in the local De-
launay tessellationTk whose circumspheres are not com-
pletely contained inSk, i.e. all simplices that do not satisfy
Eq. (1). Figure1 shows one of the local Delaunay triangula-
tions Tk and the triangulation̂Tk after the deletion of trian-
gles that are not guaranteed to satisfy the Delaunay property
globally.

The final step is to merge theN modified tessellationŝTk,
k = 1, . . . ,N , that have been constructed completely in paral-
lel into a single global tessellation. The key observation here
is that each regional tessellation̂Tk is now exactly a por-
tion of the global Delaunay tessellationbecause if two lo-
cal tessellationŝTi andT̂k overlap, they must coincide wher-
ever they overlap. This follows from the uniqueness property
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points inP that are not inPk. This follows because the points in anyTk are unaware of the triangles

and points outside ofSk so that there may be points inP that are not inPk that lie within the circum-

sphere of a simplex inTk. In fact, only simplices whose circumspheres are completely contained

inside of the ballSk are guaranteed to be globally Delaunay; those points satisfy the criteria

||ck− ĉi||+ r̂i <rk, (1)

wherêci andr̂i are the centre and radius of the circumsphere of theith triangle in the local Delaunay

tessellationTk.

So, at this point, for eachk= 1,...,N , we construct the triangulation̂Tk by discarding all sim-

plices in the local Delaunay tessellationTk whose circumspheres are not completely contained inSk,

i.e., all simplices that do not satisfy (1). Figure 1 shows one of the local Delaunay triangulationsTk120

and the triangulation̂Tk after the deletion of triangles that are not guaranteed to satisfy the Delaunay

property globally.

Fig. 1. A local Delaunay triangulationTk (left) and the triangulation̂Tk after the deletion of triangles that are

not guaranteed to satisfy the Delaunay property globally.

The final step is to merge theN modified tessellationŝTk, k = 1,...,N , that have been con-

structed completely in parallel into a single global tessellation. The key observation here is that

each regional tessellation T̂k is now exactly a portion of the global Delaunay tessellation because if125

two local tessellationŝTi andT̂k overlap, they must coincide wherever they overlap. This follows

from the uniqueness property of the Delaunay tessellations. Thus,the union of the local Delaunay

tessellations is the global Delaunay tessellation; by using an overlapping domain decomposition,

the stitching of the regional Delaunay tessellations into aglobal one is transparent. Of course, some

bookkeeping chores have to be done such as rewriting simplexinformation in terms of global point130

indices and counting overlapping simplices only once.

A final note is that the radii{rk}Nk=1
should be chosen large enough so that there are no gaps

5

Fig. 1. A local Delaunay triangulationTk (left) and the triangulation̂Tk after the deletion of triangles that are not guaranteed to satisfy the
Delaunay property globally.

of the Delaunay tessellations. Thus,the union of the local
Delaunay tessellations is the global Delaunay tessellation;
by using an overlapping domain decomposition, the stitch-
ing of the regional Delaunay tessellations into a global one
is transparent. Of course, some bookkeeping chores have to
be done such as rewriting simplex information in terms of
global point indices and counting overlapping simplices only
once.

In summary, the algorithm for the construction of a Delau-
nay tessellation in parallel consists of the following steps:

– define overlapping ballsSk, k = 1, . . . ,N , that cover the
given region�;

– sort the given point setP into the subsetsPk, k =

1, . . . ,N , each containing points inP that are inSk;

– for k = 1, . . . ,N , construct in parallel theN Delaunay
tessellationsTk of the points setsPk;

– for k = 1, . . . ,N , construct in parallel the tessellation̂Tk

by removing fromTk all simplices that are not guaran-
teed to satisfy the circumsphere property;

– construct the Delaunay tessellation ofP as the union of
theN modified Delaunay tessellations{T̂k}

N
k=1.

Once a Delaunay tessellation is determined, it is an easy mat-
ter, at least for domains inR2 andR3, to construct the dual
Voronoi tessellation; see, e.g.Okabe et al.(2000).

2.1.1 Methods for decomposing global point set

In Sect.2.1, an initial method was presented for distribut-
ing points between regions. We refer to this method as a dis-
tance sort. The distance between a point and a region centre
is computed, and if the distance is less than the region’s ra-
dius the point is considered for triangulation. The key diffi-
culty for this sort method is determining a radius which pro-
vides enough overlap, without including significantly more

points than are required. This is an even greater challenge
when considering variable resolution meshes and regions that
straddle both fine and coarse regions.

In order to properly sort the points, the overlap of the re-
gions need to be large enough to satisfy the following three
requirements:

– all points contained in a region’s Voronoi cell are not
vertices of any non-Delaunay triangles;

– the resulting triangulation includes all Delaunay trian-
gles for which owned points are vertices of;

– the point set defines all triangles whose circumcircles
fall in the region’s Voronoi cell.

If all three of these are satisfied, the point set can be used in
any of the algorithms described in this paper.

Whereas we have yet to describe a method for the choice
of region radius, let us first begin by describing the two ex-
tremes. First, consider a radius that encompasses the entire
domain. This obviously provides enough overlap to guaran-
tee the three conditions are satisfied. Second, consider a ra-
dius that is equivalent to the edges of the region’s Voronoi
cell, and no larger. In this case, the overlap is obviously in-
sufficient to satisfy the three conditions. This can be seen if
we assume at least one non-Delaunay triangle exists at the
boundary of the Voronoi cell, in which case both criteria 1
and 2 are not met.

In practice, choosing the radii{rk}Nk=1 to be equal to the
maximum distance from the centreck of its ball Sk to the
centre of all its adjacent balls allows enough overlap in quasi-
uniform cases. However, this method still fails to provide
enough overlap in certain cases. All of the failures occur
when the global point set does not include enough points
for the decomposition of choice. Before discussing the target
number of points for a given decomposition, an alternative
sorting method is introduced.

In an attempt to provide better load balancing in gen-
eral for arbitrary density functions, we also developed an
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alternative sorting method. We refer to this sorting method as
the Voronoi sort. In this case, the method for sorting points
makes use of the Voronoi property that all points contained
within a Voronoi cell are closer to that cell’s generator than
any other generator in the set. It is important to note that
the coarse Voronoi cells used for domain decomposition here
are not the same as Voronoi cells related to the Delaunay
triangulation we are attempting to construct. To begin, the
point set is divided into the Voronoi cells defined by the re-
gion’s centre, and its neighbour’s region centres. The union
of the owned region’s point set and its immediately adjacent
region’s point sets defines the final set of points for triangu-
lation.

As with the distance sort, the Voronoi sort meets all of the
criteria for use in the described algorithms. However, it can
also still fail in certain cases. Both sort methods can fail if the
target point set is too small for the target decomposition. In
this case, one or more regions do not include enough points
to correctly compute a triangulation through any method. In
practice, these algorithms fail if the decomposition includes
more than two regionsN , and the point set contains less than
16N points, or two bisections. For example, a 12 processor
decomposition cannot be used with a target of 42 points, but
a 12 processor decomposition can be used with a target of
162 points.

In general, the decomposition should be created using the
target density function to provide optimal load balancing, and
to improve robustness of the algorithm. Results for these sort
methods are presented in Sect.4.2.2.

2.2 Application to the construction of centroidal
Voronoi and Delaunay tessellations

Given a Voronoi tessellationV = {Vj }
n
j=1 of a bounded re-

gion � ⊂ Rk corresponding to the set of generatorsP =

{xj }
n
j=1 and given a nonnegative functionρ(x) defined over

�, referred to as thepoint-density function, we can define the
centre of massor centroidx∗

j of each Voronoi region as

x∗

j =

∫
Vj

xρ(x)dx∫
Vj

ρ(x)dx
, j = 1, . . . ,n. (2)

In general,xj 6= x∗

j , i.e. the generators of the Voronoi cells
do not coincide with the centres of mass of those cells. The
special case for whichxj = x∗

j for all j = 1, . . . ,n, i.e. for
which all the generators coincide with the centres of mass of
their Voronoi regions, is referred to as acentroidal Voronoi
tessellation(CVT).

Given�, n, andρ(x), a CVT of � must be constructed.
The simplest means for doing so is Lloyd’s method (Lloyd,
1982) in which, starting with an initial set ofn distinct gener-
ators, one constructs the corresponding Voronoi tessellation,
then determines the centroid of each of the Voronoi cells,
and then moves each generator to the centroid of its Voronoi
cell. These steps are repeated until satisfactory convergence

is achieved, e.g. until the movement of generators falls be-
low a prescribed tolerance. The convergence properties of
Lloyd’s method are rigorously studied inDu et al.(2006a).

The point-density functionρ plays a crucial role in how
the converged generators are distributed and the relative sizes
of the corresponding Voronoi cells. If we arbitrarily select
two Voronoi cellsVi andVj from a CVT, their grid spacing
and density are related as

hi

hj

≈

(
ρ(xj )

ρ(xi)

) 1
d+2

, (3)

wherehi denotes a measure of the linear dimension, e.g. the
diameter, of the cellVi andxi denotes a point, e.g. the gen-
erator, inVi . Thus, the point-density function can be used
to produce nonuniform grids in either a passive or adaptive
manner by prescribing aρ or by connectingρ to an error in-
dicator, respectively. Although the relation Eq. (3) is at the
present time a conjecture, its validity has been demonstrated
through many numerical studies; see, e.g.Du et al.(1999);
Ringler et al.(2011). CVTs and their dual Delaunay tes-
sellations have been successfully used for the generation of
high-quality nonuniform grids; see, e.g.Du and Gunzburger
(2002); Du et al.(2003b, 2006b); Ju et al.(2011); Nguyen
et al.(2008).

As defined above, every iteration of Lloyd’s method re-
quires the construction of the Voronoi tessellation of the cur-
rent set of generators followed by the determination of the
centroids of the Voronoi cells. However, the construction of
the Voronoi tessellation can be avoided until after the iter-
ation has converged and instead, the iterative process can
be carried out with only Delaunay tessellation constructions.
Thus, the first task within every iteration of Lloyd’s method
is to construct the Delaunay tessellation of the current set of
generators. The parallel algorithm for the generation of De-
launay tessellations given in Sect.2.1 is thus especially use-
ful in reducing the costs of the multiple tessellations needed
in CVT construction.

After the Delaunay tessellation of the current generators is
computed, every Voronoi cell centre of mass must be com-
puted by integration, so its generator can be replaced by the
centre of mass. Superficially, it seems that we cannot avoid
constructing the Voronoi tessellation to do this. However, it
is easy to see that one does not actually need the Voronoi
tessellation and instead one can determine the needed cen-
troids from the Delaunay tessellation. For simplicity, we re-
strict this discussion to tessellations inR2. Each triangle in
a Delaunay triangulation contributes to the integration over
three different Voronoi cells. The triangle is split into three
kites, each made up of two edge midpoints, the triangle cir-
cumcentre, and a vertex of the triangle. Each kite is part of
the Voronoi cell whose generator is located at the triangle
vertex associated with the kite. Integrating over each kite and
updating a portion of the integrals in the centroid formula
Eq. (2) allows one to only use the Delaunay triangulation to
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determine the centroids of the Voronoi cells. Thus, because
both steps within each Lloyd iteration can be performed us-
ing only the Delaunay triangulation, determining the gener-
ators of a CVT does not require construction of any Voronoi
tessellations nor does it require any mesh connectivity infor-
mation. If one is interested in the CVT, one need only con-
struct a single Voronoi tessellation after the Lloyd iteration
has converged; if one is interested in the Delaunay tessella-
tion corresponding to the CVT, then no Voronoi construction
is needed.

To make this algorithm parallel, one can compute the
Voronoi cell centroids using the local Delaunay tessellations
and not on the stitched-together global one. However, be-
cause the local Delaunay tessellations overlap, one has to en-
sure that each generator is only updated by one region, i.e. by
only one processor. This can be done using one of a variety
of domain decomposition methods. We use a coarse Voronoi
diagram corresponding to the region centresck. Each proces-
sor only updates the generators that are inside of its coarse
Voronoi cell. Because Voronoi cells are non-overlapping,
each generator will only get updated by one processor. Af-
ter all the generators are updated, each coarse region needs
to transfer its newly updated points only to its adjacent re-
gions and not to all active processors. This limits each pro-
cessor’s communications to roughly six sends and receives,
regardless of the total number of processors used.

We use two metrics tocheck for the convergenceof the
Lloyd iteration, namely thè 2 and `∞ norms of generator
movement given by

`2norm=

(1

n

n∑
j=1

(xold
j − xnew

j )2
)1/2

and

`∞norm= max
j=1,...,n

(|xold
j − xnew

j |),

respectively, are compared with a given tolerance; here, old
and new refer to the previous and current Lloyd iterates. If
either norm falls below the tolerance, the iterative process is
deemed to have converged. The`∞ norm is more strict, but
both norms follow similar convergence paths when plotted
against the iteration number.

A variety of point sets can be used toinitiate Lloyd’s
method for CVT construction. The obvious one is Monte
Carlo points (Metropolis and Ulam, 1949). These can either
be sampled uniformly over� or sampled according to the
point-density functionρ(x). The latter approach usually re-
duces the number of iterations required for convergence. One
can instead use a bisection method to build fine grids from
a coarse grid (Heikes and Randall, 1995). To create a bisec-
tion grid, a coarse CVT is constructed using as few points
as possible. After this coarse grid is converged, inR2, one
would add the midpoint of every Voronoi cell edge or Delau-
nay triangle edge to the set of points. This causes the overall
grid spacing to be reduced by roughly a factor of two in every
cell so that the refined point set is roughly four times larger.

In summary, the algorithm for the construction of a CVT
in parallel consists of the following steps; the steps in Roman
font are the same as in the algorithm of Sect.2.1whereas the
italicized steps, as well as the do loop, are additions for CVT
construction:

– define overlapping balls that cover the given region;

– while not convergeddo

– sort the current point set;

– construct in parallel the local Delaunay tessella-
tions;

– remove from the Delaunay tessellations simplices
which are not guaranteed to satisfy the circum-
sphere property;

– in parallel, determine the centroids of the Voronoi
cells by integrating over simplices;

– move each generator to the corresponding cell cen-
troid;

– test the convergence criteria;

– communicate new generator positions to neigh-
bouring balls;

– end

– construct the Delaunay tessellation corresponding to the
CVT as the union of the modified local Delaunay tessel-
lations.

3 Parallel Delaunay and Voronoi tessellation
construction on the sphere

Replacing the planar constructs of Delaunay triangulations
and Voronoi tessellations with their analogous components
on the sphere, i.e. on the surface of a ball inR3, creates the
spherical versions of Delaunay triangulations and Voronoi
tessellations. The Euclidean distance metric is replaced by
the geodesic distance, i.e. the shortest of the two lengths
along the great circle joining two points on the sphere. Trian-
gles and Voronoi cells are replaced with spherical triangles
and spherical Voronoi cells whose boundaries are geodesic
arcs. To develop a parallel Delaunay and Voronoi tessella-
tion construction algorithm on the sphere, we could try to
parallelize the STRIPACK algorithm ofRenka(1997). Here,
however, we take a new approach that is based on a combi-
nation of stereographic projections (which we briefly discuss
in Sect.3.1) and the algorithm of Sect.2.1applied to planar
domains. The serial version of the new Delaunay tessellation
construction algorithm is therefore novel as well.

www.geosci-model-dev.net/6/1353/2013/ Geosci. Model Dev., 6, 1353–1365, 2013
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3.1 Stereographic projections

Stereographic projections are special mappings between the
surface of a sphere and a plane tangent to the sphere. Not only
are stereographic projections conformal mappings, meaning
that angles are preserved, but they also preserve circularity,
meaning that circles on the sphere are mapped to circles on
the plane. Stereographic projections also map the interior of
these circles to the interior of the mapped circles (Bowers
et al., 1998; Saalfeld, 1999). For our purposes, the impor-
tance of circularity preservation is that it implies that stereo-
graphic projections preserve the Delaunay circumcircle prop-
erty. This follows because triangle circumcircles (along with
their interiors) are preserved. Therefore, Delaunay triangu-
lations on the sphere are mapped to Delaunay triangulations
on the plane and conversely. As a result, stereographic pro-
jections can be used to construct a Delaunay triangulation of
a portion of the sphere by first constructing a Delaunay tri-
angulation in the plane, which is a simpler and well-studied
task.

Without loss of generality, we assume that we are given
the unit sphere inR3 centred at the origin. We are also given
a plane tangent to the sphere at the pointt . The focus pointf
is defined as the reflection oft about the centre of the sphere,
i.e. f is the antipode oft . Let p denote a point on the unit
sphere. The stereographic projection ofp onto the plane tan-
gent att is the pointq on the plane defined by

q = sp + (1− s)f , where s = 2
1

f · (f − p)
. (4)

For our purposes, it is more convenient to define the projec-
tion relative tot rather thanf . The simple substitution of
f = −t into Eq. (4) results in

q = sp + (s − 1)t, where s = 2
1

t · (p + t)
. (5)

The definitions Eqs. (4) and (5) can also be used to define
stereographic projections inRk for k > 3.

3.2 Parallel algorithm for spherical Delaunay
triangulation construction

A spherical Delaunay triangulation (SDT) is the Delaunay
triangulation of a point setP defined on the surface of the
sphere. We adapt the algorithm developed in Sect.2.1 for
domains inRk to develop a parallel algorithm for the con-
struction of SDTs. The most important adaptation is to use
stereographic projections so that the actual construction of
Delaunay triangulations is done on planar domains.

We are now given a set of pointsP = {xj }
n
j=1 on a subset

� of the sphere;� may be the whole sphere. We begin by
covering� by a setU = {Uk(tk, rk)}

N
k=1 of N overlapping

“umbrellas” or spherical capsUk, each of which is defined
by a centre pointtk and geodesic radiusrk. See Fig.2a. For
each spherical capUk, a connectivity (or neighbours) list is
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Fig. 2. (a) An overlapping subdivision of the sphere intoN = 12
spherical caps. The cap centrestk are the projections onto the
sphere of the centroids of the 12 pentagons of the inscribed reg-
ular icosahedron. Each coloured ring represents the edge of cap of
radiusrk . (b) A 10 242 generator Delaunay triangulation by the par-
allel algorithm.

defined that consists of the indices of all the spherical caps
Ui ∈ U , i 6= k, that overlap withUk. From the given point set
P , we then createN smaller point setsPk, k = 1, . . . ,N , each
of which consists of the points inP which are in the spherical
capUk. Due to the overlap of the spherical capsUk, a point
in P may end up belonging to multiple points setsPk.

At this point in Sect.2.1, we assigned each of the point
subsetsPk to a processor and constructedN Delaunay
tessellations in parallel. Before doing so in the spherical case,
we project each of the point setsPk onto the plane tangent
at the corresponding pointtk. This additional step allows
each processor to construct a planar Delaunay triangulation
instead of spherical one. Specifically, for eachk, we con-
struct the planar point set̃Pk = S(Pk; tk), whereS(Pk; tk)

denotes the stereographic projection of the points inPk onto
the plane tangent to the sphere at the pointtk. We then as-
sign each of the point sets̃Pk to a different processor and
have each processor construct the planar Delaunay triangu-
lation of its point set̃Pk. Because stereographic projections
preserve circularity and therefore preserve the Delaunay cir-
cumcircle property, it is then just a simple matter of keeping
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track of triangle vertex and edge indices to define the spheri-
cal Delaunay triangulations of the point setsPk.

As in Sect.2.1, we now proceed to remove spherical tri-
angles that are not guaranteed to be Delaunay with respect
to the global point setP . Instead of Eq. (1), in the spherical
case, triangles must satisfy

cos−1
||tk − ĉi || + r̂i < rk,

for that guarantee to be in effect, wheret̂ i and r̂i are the
centre and radius, respectively, of the circumsphere of the
i-th triangle in the local Delaunay tessellation ofPk. Once
the possibly unwanted triangles are removed, we can, as in
Sect.2.1, transparently stitch together the modified Delau-
nay triangulations into a global one.

In summary, the algorithm for the construction of a spheri-
cal Delaunay tessellation in parallel consists of the following
steps, where the italicized steps are the ones added to the al-
gorithm of Sect.2.1:

– define overlapping spherical capsUk, k = 1, . . . ,N , that
cover the given region� on the sphere;

– sort the given point setP into the subsetsPk, k =

1, . . . ,N , each containing the points inP that are inUk;

– for k = 1, . . . ,N , construct in parallel the point set̃Pk

by stereographically projecting the points inPk onto the
plane tangent to the sphere at the pointtk;

– for k = 1, . . . ,N , construct in parallel the planar Delau-
nay triangulatioñTk of the points set̃Pk;

– for k = 1, . . . ,N , construct in parallel the spherical De-
launay triangulationTk by mapping the planar Delau-
nay triangulationT̃k onto the sphere;

– for k = 1, . . . ,N , construct in parallel the spherical tri-
angulationT̂k by removing fromTk all simplices that
are not guaranteed to satisfy the circumsphere property;

– construct the Delaunay tessellation ofP as the union
of the N modified spherical Delaunay tessellations
{T̂k}

N
k=1.

For an illustration of a spherical Delaunay triangulation de-
termined by this algorithm see Fig.2b.

Because of the singularity in Eqs. (4) or (5) for p = f , the
serial version of this algorithm, i.e. ifN = 1, can run into
trouble whenever the antipodef of the tangency pointt is
in the spherical domain�. Of course, this is always the case
if � is the whole sphere. In such cases, the number of sub-
domains used cannot be less than two, even if one is running
the above algorithm in serial mode.

In setting the extent of overlap, i.e. the radii of the spheri-
cal caps, as the maximum geodesic distance from the a cap
centretj to neighbouring cap centrest i , the geodesic dis-
tance is given by cos−1(tj · t i).

Table 1.Description of generator count labels, along with approxi-
mate grid resolution on an earth sized sphere.

Generator Label Generator Count Approx. Resolution

coarse 40 962 120 km
medium 163 842 60 km
fine 2 621 442 15 km

3.3 Application to the construction of spherical
centroidal Voronoi tessellations (SCVTs)

The parallel CVT construction algorithm of Sect.2.2 is eas-
ily adapted for the construction of centroidal Voronoi tessel-
lations on the sphere (SCVTs). Obviously, one uses the sphe-
rical version of the Delaunay triangulation algorithm as given
in Sect.3.2instead of the version of Sect.2.1. One also has to
deal with the fact that if one computes the centroid of a sphe-
rical Voronoi cell using Eq. (2), then that centroid does not
lie on the sphere; a different definition of a centroid has to be
used (Du et al., 2003a). Fortunately, it is shown inDu et al.
(2003a) that the correct centroid can be determined by using
Eq. (2), which yields a point inside the sphere, and then pro-
jecting that point onto the sphere (actually, this was shown
to be true for general surfaces) so that the correct spherical
centroid is simply the intersection of the radial line going
through the point determined by Eq. (2) and the sphere.

4 Results

All results are created using a high performance computing
(HPC) cluster with 24 AMD Opteron “model 6176” cores
per node and 64 GB of RAM per node.

Results are presented for three different generator counts,
and are presented with the labels “coarse”, “medium”, and
“fine”. Table 1 can be used to refer these labels to actual
counts as well as approximate resolution on an earth sized
sphere.

We use STRIPACK (Renka, 1997), a serial Fortran 77 As-
sociation of Computing Machinery (ACM) Transactions on
Mathematical Software (TOMS) algorithm that constructs
Delaunay triangulations on a sphere, as a baseline for com-
parison with our approach. It is currently one of the few well-
known spherical triangulation libraries available.

The algorithm described in this paper has been imple-
mented as a software packaged referred to as MPI-SCVT,
and is freely available followingJacobsen and Womeldorff
(2013). It utilizes the Triangle software (Shewchuk, 1996) to
perform planar triangulations of specified point sets in the
tangent planes of each partition of the domain.
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4.1 Delaunay triangulations of the full sphere

Table2 compares MPI-SCVT with STRIPACK for the con-
struction of spherical Delaunay triangulations. The results
given compare the cost to compute a single triangulation of
a medium resolution global grid. The results show, for the
computation of a full spherical triangulation MPI-SCVT is
roughly a factor of 7 slower than STRIPACK in serial mode,
and a factor of 12 faster when using 96 processors.

4.2 Initial generator placement and sorting heuristics
for SCVT construction

We now examine the effects of initial generator placement
and sorting heuristics with regards to SCVT generation. The
results of this section are intended to guide decisions about
which initial condition or sorting method we use later to gen-
erate SCVTs.

4.2.1 Initial generator placement

Because most climate models are shifting towards global
high-resolution simulations, we begin by exploring the cre-
ation of a fine resolution grid. We compare SCVT grids
constructing starting with uniform Monte Carlo and bisec-
tion initial generator placement. The times for these grids to
converge to a tolerance 10−6 in the `2 norm are presented.
The 10−6 threshold is the strictest convergence level that the
Monte Carlo grid can attain in a reasonable amount of time,
and is therefore chosen as the convergence threshold for this
study. However, the bisection grid can converge well beyond
this threshold in a similar amount of time. Table3 shows
timing results for the parallel algorithm for the two differ-
ent options for initial generator placement. Although the time
spent converging a mesh with Monte Carlo initial placements
is highly dependent on the initial point set, it is clear from
this table that bisection initial conditions provide a significant
speedup in the overall cost to generate an SCVT grid. Based
on the results presented in Table3 and unless otherwise spec-
ified, only bisection initial generator placements are used in
subsequent experiments. Bisection initial conditions are not
specific to this algorithm, and can be used to accelerate any
SCVT grid generation method.

4.2.2 Sorting of points for assignment to processors

As described in Sect.2.1.1, the MPI-SCVT code utilizes two
methods for determining a region’s point set. Whereas the dot
product sort method is faster, it provides poor load balanc-
ing in variable resolution meshes, thus causing the iteration
cost to be greater. Timings using both approaches are given
in Table4. Figure3 shows the number of points that each
processor has to triangulate on a per iteration basis. Tim-
ings presented are for a medium resolution grid, 42 regions,
42 processors, and are averages over 3000 iterations. Three
sets of timings are given. Timings labeled Uniform and×8

it not only speeds up the overall cost per iteration, but alsoprovides a more balanced loads across365

the processors. Note that, in Table 3, timings are taken relative to processor number 0, and as can

be seen in Fig. 5(a), processor 0 has a very small load so the majority of its iteration time is spent

waiting for the processors with large loads to finish and catch up; this idling time is included in the

Communication column of the table.

Sorting Costs Of Different Algorithm Steps Cost Per

Approach Triangulation Integration Communication Iteration Speedup

Uniform 14.9779 39.3149 2556.971 2611.35 Base

x16 104.793 276.681 1560.71 1965.56 1.32

Voronoi 98.5482 249.77 288.694 640.472 4.07

Table 3. Timings based on sorting approach used. Uniform uses a coarse quasi-uniform SCVT to define region

centres and their associated radii and sorts using maximum distance between centres and neighbouring centres.

x16 uses a coarse SCVT with a 16 to 1 ratio in grid sizes to effect the same type of sorting. Voronoi uses the

same x16 coarse SCVT grid to define regions centres and sorts using theneighbouring Voronoi cell-based sort.

 0

 50000

 100000

 150000

 200000

 0  5  10  15  20  25  30  35  40

N
um

be
r 

of
 s

or
te

d 
po

in
ts

 in
 r

eg
io

n

Region number

Uniform Decomposition

(a) Uniform

 0

 50000

 100000

 150000

 200000

 0  5  10  15  20  25  30  35  40

N
um

be
r 

of
 s

or
te

d 
po

in
ts

 in
 r

eg
io

n

Region number

x16 Decomposition

 0

 50000

 100000

 150000

 200000

 0  5  10  15  20  25  30  35  40

N
um

be
r 

of
 s

or
te

d 
po

in
ts

 in
 r

eg
io

n

Region number

x16 Decomposition

(b) x16

 0

 50000

 100000

 150000

 200000

 0  5  10  15  20  25  30  35  40

N
um

be
r 

of
 s

or
te

d 
po

in
ts

 in
 r

eg
io

n

Region number

Voronoi Decomposition

(c) Voronoi

Fig. 5. Number of points each processor has to triangulate. 5(a), 5(b), and 5(c) use the sorting approaches

corresponding to the three rows of Table 3. All plots were created with the same set of 163842 generators.
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Fig. 3.Number of points each processor has to triangulate.(a), (b),
and(c) use the sorting approaches corresponding to the three rows
of Table4. All plots were created with the same medium resolution
grid.

both utilize the distance sort, but differ in the decomposition
used. Uniform uses a quasi-uniform 42 region decomposi-
tion, whereas×8 uses a variable resolution decomposition
with sixteen to one ration in maximum and minimum grid
sizes. Timings labeled Voronoi use the same decomposition
as×8, but use the Voronoi sort method rather than the dis-
tance sort method.
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Table 2.Comparison of STRIPACK with serial and parallel versions of MPI-SCVT for computation of a full spherical triangulation. Com-
puted using the same initial conditions for a medium resolution grid.

Algorithm Processors Regions Time (ms) Speedup (STRIPACK/MPI-SCVT)

STRIPACK 1 1 563.87 Baseline
MPI-SCVT 1 2 3 724.08 0.15
MPI-SCVT 2 2 2 206.06 0.26
MPI-SCVT 96 96 45.75 12.33

Table 3.Timing results for MPI-SCVT with bisection and Monte Carlo initial generator placements and the speedup of bisection relative to
Monte Carlo. Final mesh is fine resolution.

Timed Portion Bisection (B) Monte Carlo (MC) SpeedupMC
B

Total Time (ms) 112 890 358 003 000 3171.25
Triangulation Time (ms) 10 887 48 034 600 4412.11
Integration Time (ms) 30 893 66 374 400 2148.52
Communication Time (ms) 70 878 110 958 000 1565.47

Table 4.Timings based on sorting approach used. Uniform uses a coarse quasi-uniform SCVT to define region centres and their associated
radii and sorts using maximum distance between centres and neighbouring centres.×8 uses a coarse SCVT with a 8 to 1 ratio in grid sizes
to effect the same type of sorting. Voronoi uses the same×8 coarse SCVT grid to define regions centres and sorts using the neighbouring
Voronoi cell-based sort.

Sorting Decomposition Costs Of Different Algorithm Steps Cost Per
Approach Grid Triangulation Integration Communication Iteration Speedup

Distance Uniform 14.53 37.62 1314.22 1396.53 Baseline
Distance ×8 35.84 92.91 865.32 995.04 1.40
Voronoi ×8 16.71 86.24 177.55 305.85 4.56

Timings presented in Table4 are taken relative to proces-
sor number 0, and as can be seen in Fig.3a, processor 0 has
a very small load which causes the majority of its iteration
time being spent waiting for the processors with large loads
to catch up; this idling time is included in the Communica-
tion column of the table.

Table4 and Fig.3 show there is a significant advantage to
the Voronoi based sort method in that it not only speeds up
the overall cost per iteration, but also provides more balanced
loads across the processors.

4.3 SCVT generation

We now provide both quasi-uniform and variable resolution
SCVT generation results. The major contributor to the differ-
ences in computational performance arises as a result of load
balancing differences. Results in this section make use of the
density function

ρ(xi) =
1

2(1− γ )

[
tanh

(
β − |xc − xi |

α

)
+ 1

]
+ γ (6)

which is visualized in Fig.4, wherexi is constrained to lie
on the surface of the unit sphere. This function results in
relatively large value ofρ within a distanceβ of the point
xc, where β is measured in radians andxc is also con-
strained to lie on the surface of the sphere. The function tran-

results. This should provide appropriate load balancing when generating SCVT meshes. Using

this sorting method should result in quasi-uniform and variable resolution SCVT generation to be

comparable in terms of performance.

4.3 SCVT generation

We now provide both quasi-uniform and variable resolution SCVT generation results. The major

contributor to the differences in computational performance arises as a result of load balancing dif-

ferences. Results in this section make use of the density function

ρ(xi)=
1

2(1−γ)

[
tanh

(
β−|xc−xi|

α

)
+1

]
+γ (6)

which is visualized in Fig. 6, wherexi is constrained to lie on the surface of the unit sphere. This375

function results in relatively large value ofρ within a distanceβ of the pointxc, whereβ is measured

in radians andxc is also constrained to lie on the surface of the sphere. The function transitions

to relatively small values ofρ across a radian distance ofα. The distance betweenxc andxi is

computed as|xc−xi|=cos−1(xc ·xi) with a range from0 to π.
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Figure 7 shows an example grid created using this density function, withxc set to beφc =3π/2,380

λc =π/6, whereφ denotes longitude andλ latitude,γ=(1/8)4, β=π/6, andα=0.20 with 10,242

generators. This set of parameters used in (6) is referred toas x8. The quasi-uniform version is

referred to as x1.

16

Fig. 4.Density function that creates a grid with resolutions that dif-
fer by a factor of 8 between the coarse and the fine regions. The
maximum value of the density function is 1 whereas the minimum
value is(1/8)4.

sitions to relatively small values ofρ across a radian dis-
tance ofα. The distance betweenxc andxi is computed as
|xc − xi | = cos−1(xc · xi) with a range from 0 toπ .

Figure5 shows an example grid created using this density
function, with xc set to beλc = 3π/2, φc = π/6, whereλ

denotes longitude andφ latitude,γ = (1/8)4, β = π/6, and

www.geosci-model-dev.net/6/1353/2013/ Geosci. Model Dev., 6, 1353–1365, 2013



1362 D. W. Jacobsen et al.: Parallel algorithms for Delaunay construction8 D. W. Jacobsen et al.: Parallel algorithms for Delaunay construction

(a) Coarse region (b) Transition region

(c) Fine region

Fig. 7. Different views of the same variable resolution grid created using the density function (6). Figure 7(a)

shows the coarse region of the grid, 7(b) shows the transition region, and 7(c) shows the fine region.

In Sect. 4.1, we showed that MPI-SCVT performs comparably toSTRIPACK when computing a

single full triangulation. However, computing a full triangulation is only part of the story. For SCVT385

generation, a triangulation needs to be computed at every iteration of Lloyd’s algorithm as described

in Sect. 2.3. When using STRIPACK, the full triangulation needs to be computed at every iteration,

but with MPI-SCVT only each regional triangulation needs tobe computed at each iteration. This

means the merge step can be skipped resulting in significantly cheaper triangulations.

Figure 8 shows the performance of a STRIPACK-based SCVT construction as the number of390

generators is increased through bisection as mentioned in Sect. 2.3. Values are averages over 2000

iterations. The green dashed line represents the portion ofthe code that computes the centroids of

the Voronoi regions whereas the red solid line represent theportion of the code that computes the

Delaunay triangulation.
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Fig. 5.Different views of the same variable resolution grid created using the density function Eq. (6). (a) shows the coarse region of the grid,
(b) shows the transition region, and(c) shows the fine region.

Table 2.Comparison of STRIPACK with serial and parallel versions of MPI-SCVT for computation of a full spherical triangulation. Com-
puted using the same initial conditions for a medium resolution grid.

Algorithm Processors Regions Time (ms) Speedup (STRIPACK/MPI-SCVT)

STRIPACK 1 1 563.87 Baseline
MPI-SCVT 1 2 3 724.08 0.15
MPI-SCVT 2 2 2 206.06 0.26
MPI-SCVT 96 96 45.75 12.33
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Fig. 6. Timings for STRIPACK-based SCVT construction for var-
ious generator counts. Red solid lines represent the time spent in
STRIPACK computing a triangulation whereas green dashed lines
represent the time spent integrating the Voronoi cells outside of
STRIPACK in one iteration of Lloyd’s algorithm.

steps, where the italicized steps are the ones added to the al-
gorithm of Sect.2.1:

– define overlapping spherical capsUk, k = 1, . . . ,N , that
cover the given region� on the sphere;

– sort the given point setP into the subsetsPk, k =

1, . . . ,N , each containing the points inP that are inUk;
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Fig. 7. Timings for various portions of MPI-SCVT using 2 pro-
cessors and 2 regions. As the problem size increases the slope for
both triangulation (red-solid) and integration (green-dashed) remain
roughly constant.

– for k = 1, . . . ,N , construct in parallel the point set̃Pk

by stereographically projecting the points inPk onto the
plane tangent to the sphere at the pointtk;

– for k = 1, . . . ,N , construct in parallel the planar Delau-
nay triangulatioñTk of the points set̃Pk;
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Fig. 5.Different views of the same variable resolution grid created using the density function Eq. (6). (a) shows the coarse region of the grid,
(b) shows the transition region, and(c) shows the fine region.

Table 5.Comparisons of SCVT generators using STRIPACK, serial MPI-SCVT, and parallel MPI-SCVT. Cost per triangulation and iteration
are presented. Speedup is compared using the cost per iteration. Computed using the same initial conditions for a medium resolution grid.
Variable resolution results are presented for MPI-SCVT only.

Algorithm Procs Regions Triangulation Iteration Speedup Per Iteration
Time (ms) Time (ms) (STRIPACK/MPI-SCVT)

STRIPACK 1 1 563.871 3 009.74 Baseline
MPI-SCVT×1 1 2 3 480.43 9 485.78 0.32
MPI-SCVT×1 2 2 2 114.38 5 390.82 0.56
MPI-SCVT×1 96 96 14.23 207.26 14.52
MPI-SCVT×8 96 96 16.71 305.855 9.84
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Fig. 6. Timings for STRIPACK-based SCVT construction for var-
ious generator counts. Red solid lines represent the time spent in
STRIPACK computing a triangulation whereas green dashed lines
represent the time spent integrating the Voronoi cells outside of
STRIPACK in one iteration of Lloyd’s algorithm.

α = 0.20 with 10 242 generators. This set of parameters used
in Eq. (6) is referred to as×8. The quasi-uniform version is
referred to as×1.

In Sect.4.1, we showed that MPI-SCVT performs compa-
rably to STRIPACK when computing a single full triangu-
lation. However, computing a full triangulation is only part
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Fig. 7. Timings for various portions of MPI-SCVT using 2 pro-
cessors and 2 regions. As the problem size increases the slope for
both triangulation (red-solid) and integration (green-dashed) remain
roughly constant.

of the story. For SCVT generation, a triangulation needs to
be computed at every iteration of Lloyd’s algorithm as de-
scribed in Sect.2.2. When using STRIPACK, the full triangu-
lation needs to be computed at every iteration, but with MPI-
SCVT only each regional triangulation needs to be computed
at each iteration. This means the merge step can be skipped
resulting in significantly cheaper triangulations.
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Fig. 8.Same information as in Fig.7 but for 96 processors and
96 regions.

Figure 6 shows the performance of a STRIPACK-based
SCVT construction as the number of generators is increased
through bisection as mentioned in Sect.2.2. Values are aver-
ages over 2000 iterations. The green dashed line represents
the portion of the code that computes the centroids of the
Voronoi regions whereas the red solid line represent the por-
tion of the code that computes the Delaunay triangulation.

Table5 compares STRIPACK with the triangulation rou-
tine in MPI-SCVT that is called on every iteration. The re-
sults presented relative to MPI-SCVT are averages over 2000
iterations.

As a comparison with Fig.6, in Figs.7 and8 we present
timings made for MPI-SCVT for two and 96 regions and pro-
cessors, respectively, as the problem size, i.e. the number of
generators, increases. A minimum of two processors are used
because the stereographic projection used in MPI-SCVT has
a singularity at the focus point.

Whereas Fig.7 shows performance similar to that of
STRIPACK (see Fig.6), Fig. 8 shows roughly two orders
of magnitude faster performance relative to STRIPACK. As
mentioned previously, this is only the case when creating
SCVTs as the full triangulation is no longer required when
computing a SCVT in parallel.

4.4 General algorithm performance

This section is intended to showcase some general perfor-
mance results of MPI-SCVT. Figure9a–c show the timings
for a coarse resolution grid, a medium resolution grid, and a
fine resolution grid, respectively.

To assess the overall performance of the MPI-SCVT algo-
rithm, scalability results are presented in Fig.10. Figure10a
shows that this algorithm can easily under-saturate proces-
sors; when this happens, communication ends up dominat-
ing the overall runtime for the algorithm which is seen in
Fig. 9a; as a result, scalability ends up being sub-linear. As
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Fig. 9. Timing results for MPI-SCVT vs. number of processors for
three different problem sizes. Red solid-lines represent the cost of
computing a triangulation, whereas green-dashed lines represent the
cost of integrating all Voronoi cells, and blue-dotted lines represent
the cost of communicating each region’s updated point set to its
neighbours.

the number of generators increases (as seen in Fig.10b, c),
the limit for being under-saturated is higher. Currently in the
algorithm, communications are done asynchronously using
non-blocking sends and receives. Also, overall communica-
tions are reduced by only communicating with a region’s
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Fig. 10.Scalability results based on number of generators. Green is
a linear reference whereas red is the speedup computed using the
parallel version of MPI-SCVT compared to a serial version.

neighbours. This is possible because points can only move
within a region radius on any two subsequent iterations, and
because of this can only move into another region which is
overlapping the current region. More efficiency gains could
be realized by improving communication and integration al-
gorithms. This addition of shared memory parallelization to
the integration routines might improve overall performance,

as the integration routines are embarrassingly parallel. Modi-
fication of the data structures used could also enable the gen-
eration of ultra-high resolution meshes (100M generators).
In principle, because all of the computation is local this al-
gorithm should scale linearly very well up to hundreds if not
thousands of processors.

5 Summary

A novel technique for the parallel construction of Delau-
nay triangulations is presented, utilizing unique domain de-
composition techniques combined with stereographic pro-
jections. This parallel algorithm can be applied to the gen-
eration of planar and spherical centroidal Voronoi tessella-
tions. Results were presented for the generation of sphe-
rical centroidal Voronoi tessellations, with comparisons to
STRIPACK, a well-known algorithm for the computation of
spherical Delaunay triangulations. The algorithm presented
in the paper (MPI-SCVT) shows slower performance than
STRIPACK when computing a single triangulation in serial
and faster performance when using roughly 100 processors.
When paired with a SCVT generator, the algorithm shows
additional speed up relative to a STRIPACK based SCVT
generator.
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